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Abstract

In this report we present a time-explicit, Eulerian numerical scheme for the solution of the nonlinear gyrokinetic-

Maxwell equations. The treatment of electrons is fully drift-kinetic, transverse electromagnetic fluctuations are in-

cluded, and profile variation is allowed over an arbitrary radial annulus. The code, gyro, is benchmarked against

analytic theory, linear eigenmode codes, and nonlinear electrostatic gyrokinetic particle-in-cell codes. We have at-

tempted preliminary finite-b calculations in the range b=bcrit ¼ ½0:0; 0:5� for a reference discharge. Detailed diagnostic

data is presented for these simulations, along with a number of caveats which reflect the uncharted nature of the pa-

rameter regime.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The most aggressively studied and developed concept for power production by fusion reactions is the

tokamak. Nevertheless, despite continuous advances in understanding the behavior of tokamak plasmas,

uncertainties remain in predicting the confinement properties and performance of successively larger, re-

actor-scale devices. Specifically, while present tokamak experiments can provide discharges with dimen-
sionless parameters characteristic of a reactor – such as b, safety factor, elongation, aspect ratio, etc. – they

cannot simultaneously achieve the small expected values of q�. With regard to a theoretical approach, it is

believed that the coupled gyrokinetic-Maxwell (GKM) equations lay a firm foundation for the first-prin-

ciples calculation of anomalous tokamak transport. Consequently, the numerical solution of the nonlinear

GKM equations including both electromagnetic fluctuations and radial profile variation has for years been

a computational physics ‘‘Grand Challenge’’. Complicated geometry, particle trapping, multiple space and

time-scales, and tiny electron-to-ion mass ratio preclude the use of ‘‘textbook’’ numerical approaches.
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The understanding and study of tokamak microinstabilities has, for many years now, been shaped by

extensive use of existing radially local, numerical linear solvers. The most comprehensive of these are the

eigenvalue code by Rewoldt et al. (full) [1], and the initial-value code by Kotschenreuther et al. (gks) [2].

Both include kinetic electron dynamics, electromagnetic effects, and particle trapping – and both use

Eulerian (also referred to as ‘‘continuum’’) numerical algorithms. Efficiency in gks and full is achieved

through the use of periodic, or ‘‘flux-tube’’, radial boundary conditions, whereby both operate at van-

ishingly small q�, with q� ¼ qi=a the ratio of the ion gyroradius to plasma minor radius.

With regard to the flux-tube approximation, in the vanishing-q� limit (when the turbulence scale-length
is proportional to qs), random-walk arguments applied to the GKM equations predict ion thermal diffu-

sivities, vi, with a natural gyroBohm scaling: vi � qs � qs � ðcs=aÞ. Here, cs¼
: ffiffiffiffiffiffiffiffiffiffiffi

Te=mi

p
is the sound speed,

qs¼
: cs=Xci is the ion sound Larmor radius, and Xci is the ion cyclotron frequency. However, present-day

tokamaks often produce results closer to Bohm scaling, vi � qs � a� ðcs=aÞ, to be expected when the

turbulence scale-length involves the system size a. Since tokamaks operate at finite q�, it is perhaps un-

surprising that explanations based on finite-q� effects (basically, profile variation) have been put forward

[3,4] to explain the breaking of gyroBohm scaling.

Algorithms based on solving for a few moments of the nonlinear GKM equations (‘‘gyrofluid’’ algo-
rithms) led to the discovery of the importance of zonal flows [5–7], to the quantitative identification of the

linear ion temperature grad (ITG) threshold and consequent ‘‘stiffness’’ as crucial issues for understanding

experimental data and predicting performance [2,8,9], and to the first studies of interacting ITG and TEM

turbulence [10–12]. The first efforts to solve the nonlinear toroidal gyrokinetic equations directly were of the

gyrokinetic particle-in-cell (GK-PIC) type [13–16] due to the relative algorithmic compactness and sub-

sequent ease of coding in comparison with the Eulerian solvers which followed [17,18]. Gyrofluid, GK-PIC

and Eulerian GK efforts proved to be successful for the study of ITG mode transport with adiabatic

electrons (ITG-ae), and unlocked the door to a deeper understanding of complex phenomena at work in
tokamak plasmas.

Heretofore, nonlinear GK-PIC simulations have been limited to electrostatic fluctuations, and nonlinear

Eulerian simulations have been limited to flux-tubes. Simulations realistic enough to understand the

nongyroBohm scaling of many existing experiments, and to make credible extrapolations to reactor-scale

devices, require both finite-b (electromagnetic) and finite-qs (profile) effects. Here, b is the ratio of plasma

pressure to magnetic pressure. Indeed, at the time of writing of this report, there is significant effort aimed

at the inclusion of electromagnetic effects into existing GK-PIC codes. In connection with these efforts, a

variety of promising approximate schemes have been proposed: ‘‘electromagnetic split-weight’’ [19], ‘‘fluid-
kinetic hybrid electrons’’ [20], ‘‘zero electron inertia fluid electrons’’ [21], and ‘‘kinetic electron closure’’

[22,23]. The issue of electromagnetic effects on microturbulence-driven plasma transport has also recently

been explored by Snyder and Hammett [24] using a gyrofluid model. This work suggests that a significant b-
dependence of the thermal diffusivity is to be expected, with a strong increase in transport as b nears the

ideal ballooning stability limit.

By the end of 2000, two nonlinear, toroidal, electromagnetic codes were in production use: the gs2 code

[17] (a nonlinear generalization of gks), and the gene code [18]. The latter, which neglects magnetic

trapping but retains full parallel electron dynamics, was developed by Jenko for edge turbulence studies.
Both gs2 and gene are Eulerian flux-tube codes.

To address the problem of turbulence and transport in tokamaks at finite-b, we developed gyro – a

parallel, Eulerian GKM code with gyrokinetic ions and electrons capable of treating finite-q� electro-

magnetic microturbulence. gyro can operate in either (i) flux-tube mode with periodic radial boundary

conditions and no profile variation, or (ii) radial-slice mode with nonperiodic boundary conditions and

radial profile variation. In the latter mode, an adaptive source must be added to maintain the equilibrium

profiles. Otherwise substantial changes in the equilibrium gradients can be nonlinearly generated, and

correspondingly incorrect measures of the transport scaling will be produced. Although gyro has been
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used to demonstrate the breaking of gyroBohm scaling by profile-shear stabilization in the electrostatic

limit [25], we do not treat profile variation – and do not discuss the adaptive source technique – in the

present work. Our purpose here is to document the numerical methods (and some hard-learned lessons)

required for electromagnetic simulation, and where possible to benchmark gyro with other gyrokinetic

codes.

2. Definitions

2.1. Notation

To avoid confusion, in this paper we use the bare symbol i to denote the imaginary number
ffiffiffiffiffiffiffi
	1

p
and the

dotted symbol i to denote the radial grid index. To distinguish species, we hereafter use the subscripts 1

(ions) and 2 (electrons). In a few cases, where no danger of ambiguity exists, we retain the more intuitive

subscripts i and e.

2.2. Coordinates and geometry

gyro uses a toroidal coordinate system ðr; h; fÞ based on the Miller equilibrium model [26]. r is a flux-

surface label, h is an angle in the poloidal plane, and f is an angle in the toroidal direction. Physically, r is
the mid-plane minor radius, such that b̂b � rr ¼ 0 with b̂b the unit vector directed along the unperturbed
magnetic field. The toroidal coordinate f is defined in terms of the physical toroidal angle fp as

f¼: fp 	
Z h

0

dh q̂q; where q̂q¼: b̂b � rfp

b̂b � rh
ð1Þ

is the local safety factor. By construction, f is constant along a field line: b̂b � rf ¼ 0. We will repeatedly

make use of the flux-surface-averaging operator, F, defined as

F½f �¼: 1

J0

Z p

	p
dhJðr; hÞf ðhÞ; where J0¼

:
Z p

	p
dhJðr; hÞ: ð2Þ

The quantity J, related to the Jacobian determinant, is defined as

J¼: Rðr; hÞ
R0ðrÞ

1

rjrhj
1

jrrj ; ð3Þ

in terms of which we can define a shaping factor ghðr; hÞ ¼ JB̂B. In Eq. (3), R is the horizontal distance from

the toroidal symmetry axis to the point ðr; hÞ (the major radius), whereas R0 is the distance from the toroidal

symmetry axis to the center of the flux surface at r. In the absence of Shafranov shift, R0 is constant and

equal to the location of the magnetic axis. The normalized magnetic field strength is B̂B ¼ B=ðgrB0Þ, where B
is the real field strength, B0 is the on-axis field strength, and

grðrÞ¼:
qdq
rdr

qdq
rdr

� �
r¼r�

:

,
ð4Þ

The radius r� is an arbitrary reference position, typically chosen to be the center of the radial domain.

The quantity q is defined through the toroidal flux vt¼
: B0q2=2. Details are given in [27]. For circular s	 a

geometry, we have gh ¼ gr ¼ 1 and 1=B̂B ¼ 1þ ðr=R0Þ cos h. With qðrÞ ¼ F½q̂q� the average safety factor, the

parallel derivative in ðr; h; fÞ-coordinates can be written
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b̂b � r ¼ ðb̂b � rhÞ o

oh
¼ 1

gh

1

qR0

o

oh
: ð5Þ

2.3. Units and normalizations

Our choice of units is summarized in Table 1. Beyond this, we introduce normalized densities, nsðrÞ, and
normalized gyrocenter distributions, fsðrÞ. In terms of these, the physical densities, temperatures and dis-

tributions are given by

nps ðrÞ ¼ nsðrÞn2�; T p
s ðrÞ ¼ TsðrÞT2� and f p

s ðrÞ ¼ fsðrÞn2�F Ms : ð6Þ

The physical scalar and magnetic vector potentials are related to the normalized versions by

/ðrÞ ¼ e/pðrÞ
T2�

and AkðrÞ ¼
cs
c

eAp

kðrÞ
T2�

; ð7Þ

respectively. The index s denotes the species, electron or ion, and the superscript p denotes a physical

quantity. n2� and T2� are the physical electron density and temperature at the reference position r�. Above,

F Ms ¼: e	W =Ts=ðp3=2v3s Þ and TsðrÞ ¼ msv2s=2. The equilibrium distribution is F0s ¼ nsF Ms , and W ¼: mðv2k þ v2?Þ=2
is the unperturbed energy. By making these specifications, we preclude the study of, for example, strongly

rotating plasmas. While the algorithms we describe in this report are compatible with the inclusion of

equilibrium rotation, we defer a discussion of such a generalizations to future work.

Two important parameters which appear throughout this report are the reference ion-sound gyroradius
and reference electron beta, defined as

qs¼
: cs
eB0=m1c

and be¼
: n2�T2�
B2
0=8p

: ð8Þ

2.4. The velocity-space integration operator

For each species we introduce the velocity-integration operator V ½��Z
d3vF Mf ðXg; v?; vk; tÞ ¼ V ½f �; ð9Þ

where Xg is the fixed gyrocenter location. Explicitly, we have

V ½f �¼:
X

r

1

2
ffiffiffi
p

p
Z 1

0

d�e	�
ffiffi
�

p Z 1

0

dðkB̂BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 kB̂B

p f ðr; h; f; �; k; r; tÞ; ð10Þ

Table 1

Summary of units used in gyro

Dimension Unit Description

Length a Midplane minor radius at separatrix

Velocity cs Sound speed ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2�=m1

p
Þ

Mass m1 Ion mass

Time a=cs
Temperature T2� Electron temperature
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where for brevity, species subscripts have been omitted. The normalized integration variables are �¼: W =T ,
k¼: v2?=ðB̂Bv2Þ and r ¼ sgnðvkÞ. It can be verified that V ½1� ¼ 1. In writing Eq. (10), we explicitly rule out

consideration of nonMaxwellian particle distributions. The generalization to a fast ion population is be-

yond the scope of the present work.

2.5. Representation of perturbed quantities

We expand the perturbed quantities ð/;Ak; f Þ as Fourier series in f. For example, the potential is written as

/ ¼
X
n

/nðr; hÞe	inf: ð11Þ

Although the physical field, /, is 2p-periodic in h, this representation has the implication that the Fourier
coefficients, /n, are nonperiodic, and satisfy the phase condition /nðr; pÞ ¼ P/nðr;	pÞ, where

Pðn; rÞ¼: e	2pinqðrÞ: ð12Þ

Since / is real, the coefficients satisfy /�
n ¼ /	n.

3. Simulation equations

Derivations of the nonlinear GKM equations appear in numerous other publications [28,29], so we refer

the reader to the recent paper by Jenko et al. [30] (and references therein) as a starting point. In the sections

that follow, we cast these equations in forms directly amenable to numerical solution.

3.1. The gyrokinetic equation

Rather than the real gyro-center distribution, fsn, we prefer to work with a function, hsn, chosen in order

to eliminate the time derivative of Ak from the GK equation. The relation between fsn and hsn is

hsn¼
:
fsn þ zsasvksðGAkÞn, where zs is the species charge, and as¼

:
ns=Ts. G, the gyroaveraging operator, will be

described in detail in Section 7. By hsn, we mean the nth toroidal harmonic of hs, or ðhsÞn. In terms of hsn, the
gyrokinetic equation, including collisions, is

ohsn
ot

	 C½hsn 	 zsasvkðGAkÞn� ¼ RHSnðr; h; k; �Þ; ð13Þ

RHSn ¼
�
	 1

R0q
vksðr; hÞ
ghðr; hÞ

o

oh
þ ixð1Þ

ds þ ixðrÞ
ds

o

or

	
ðhsn þ zsasðGusÞnÞ 	 insx�sðGusÞn þ iq̂qfGus; hgn; ð14Þ

where us¼
:
/ 	 vksAk,

vksðr; hÞ¼
:
r

ffiffiffiffiffiffi
m1

ms

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�TsðrÞð1	 kB̂Bðr; hÞÞ

q
: ð15Þ

The bracket f�; �g which describes the nonlinear E � B and magnetic flutter dynamics, is defined and dis-

cussed in Section 8. The coefficient of the bracket is q̂q¼: ðq=rgrÞqs. The curvature drift coefficients, xð1Þ
d and

xðrÞ
d , as well as the diamagnetic frequency x�, are given by

x�s¼
: khqs

gr

a
Lns

�
þ ð�	 3=2Þ a

LT s

	
; ð16Þ
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xð1Þ
ds ¼

:
khqs

gq
B̂B

2zsTs
R0

� 1

 
	 kB̂B

2

!
½½cos��ðr; hÞ
�

þ ½½kx=ky ��½½sin��ðr; hÞ
�
; ð17Þ

xðrÞ
ds ¼

: 	 iqs

jrrj
B̂B

2zsTs
R0

� 1

 
	 kB̂B

2

!
½½sin��ðr; hÞ: ð18Þ

Above, kh¼
: nq=r and gq¼

: ð1=qÞðrB=RBpÞ. Definitions of the other geometry-dependent factors ½½cos��, ½½sin��
and ½½kx=ky �� appear in [27]. In the limit of circular s	 a geometry, we have gr; gq; jrrj ! 1, ½½cos�� ! cos,

½½sin�� ! sin and ½½kx=ky �� ! sh 	 aMHD sin h. Although the simulations performed in this report use constant

shear and monotonic q-profiles, all discretization schemes are perfectly suitable (and have indeed been

tested) for nonmonotonic q variation.

Further, in the present work, we are not interested in fluctuations at very-short (ETG-scale) wave-

lengths, and hereafter set G ! 1 for electrons. This yields computational savings, especially for the sparse

Amp�eere solver of Section 5. The approach used to solve Eq. (13) numerically can be briefly summarized:
first, we discretize the spatial operators contained in RHS, and then apply an explicit time-integration

algorithm to the resulting ordinary differential equations. This technique is referred to as the method of

lines (MOL).

3.2. The Poisson equation

When the full kinetic electron response is included, the Poisson equation [30] is

a1ð1	RÞ/n ¼ V1½Gh1n� 	 V2½h2n�; ð19Þ

where R ¼ V1½GG� is a velocity-space-integrated double gyroaverage. The appearance of the gyro-operators

in Eq. (19) is a consequence of the mapping from physical to gyro-center coordinates in the integrand [29].

The discrete form of R is discussed in Section 7. We remind the reader that the subscript 1 denotes ions
while 2 denotes electrons. For simulation of electrostatic ITG, the physical complexity of the dynamics is

greatly reduced if the electron distribution is replaced by the adiabatic response

h2n ! a2ð/n 	 dn0F½/0�Þ; ð20Þ

where dn0 is the Kronecker delta function. The Poisson equation for the adiabatic electron model is

then

a1ð1	RÞ/n þ a2ð/n 	 dn0F½/0�Þ ¼ V1½Gh1n�: ð21Þ

The presence of the flux-surface-average is crucial for the proper n ¼ 0 density response [31]. It is this

reduced model that has received the most attention in numerical simulation for the study of ITG-ae modes.

One minor point, peculiar to the n ¼ 0 adiabatic case, is that the Poisson equation is not diagonal in h. To
obtain a numerical solution of the adiabatic model it is convenient to first solve the flux-surface-averaged

equation,

a1ð1	 F½R�ÞF½/0� ¼ FV1½Gh1n� ð22Þ

for F½/0�. To a very good approximation, we have taken F½R/0� � F½R�F½/0�. No such approximation is

required when the kinetic electron response is used. Knowing F½/0�, we can then solve an equation for /0

which is diagonal in h.
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3.3. The Amp�eere equation

To describe transverse magnetic fluctuations we use the parallel component of Amp�eere�s law (dBk effects

are generally negligible for the modes of interest and are ignored in this work). In terms of the distribution h
we have

	 2q2
s

be

r2
?Akn ¼ V1½vkGðh1n 	 a1vk1AknÞ� 	 V2½vkðh2n þ a2vk2AknÞ�: ð23Þ

Note that V1½v2k1� ¼ T1 and V2½v2k2� ¼ ðm1=m2ÞT2 � 1. Since the notation is potentially confusing, we remind the

reader that in a simulation where electron and ion temperatures are constant and equal, we have T1 ¼ T2 ¼ 1.

It has been known for many years that the Amp�eere equation, when written in the form of Eq. (23), is

frustratingly difficult to solve numerically owing to a delicate cancellation in the electron current which

occurs when be > m2=m1 – a condition that is well satisfied for experimentally relevant values of be. The

nature of the cancellation is evident upon examination of the asymptotic balance of terms in Eq. (23) (take

kr ! 0 for simplicity)

2ðkhqsÞ
2

be

Akn � 	V2½vk2h2n� 	 V2½v2k2Akn�: ð24Þ

When khqs � 0:1 and be � 1%, the LHSof Eq. (24) is approximately 2Akn, whereas the second velocity integral

on the RHS is equal to 3600Akn for a deuterium plasma! The sobering implication is that that the two velocity

integrals must cancel almost exactly, with the remainder determining the physics. This problem is made vir-
tually intolerable in GK-PIC codes owing to the presence of a finite amount of discrete particle (statistical)

noise. Various authors have reported that PIC solversmust resolve space scales on the order of the collisionless

skin depth, c=xpe ¼ qs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðm2=m1Þ

p
, to accurately describe finite-be dynamics.Methods to remedy this problem

in PIC codes are under development [19–23]. In Eulerian codes, it has been recognized that the remedy is to

ensure a term-by-term cancellation of the Oðm1=m2Þ terms in the electron current. This is normally accom-

plished by evaluating V2½v2kAkn� numerically using exactly the same discretization scheme as for V2½vkh2n�.

3.4. Model summary

In the interest of clarity, we summarize the different possible sets of model equations, in order of in-

creasing sophistication.

3.4.1. Electrostatic with adiabatic electrons

Eq. (14) for h1, plus Eq. (21) for /.

3.4.2. Electrostatic with kinetic electrons

Eq. (14) for h1 and h2, plus Eq. (19) for /.

3.4.3. Electromagnetic

Eq. (14) for h1 and h2, plus Eq. (19) for / and Eq. (23) for Ak.

4. Orbit-time grid for poloidal motion

Consider the motion due only to parallel advection (omitting the species index for brevity)

oh
ot

þ 1

R0q
vkðhÞ
ghðhÞ

o�hh
oh

¼ 0; ð25Þ
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where �hh¼: hþ zau. Eq. (25) is subject to short-wavelength numerical instability in regions where the vari-

ation of vkðhÞ is sufficiently strong. This property is well known [32], and time-explicit schemes must

normally include dissipative smoothing if a solution is sought on an equally spaced h-grid. Moreover, at

bounce points hb, where vkðhbÞ ¼ 0, the distribution function may develop cusps, bringing into question the

accuracy of any finite-difference scheme on such a grid.

This leads us to the observation that the poloidal angle, h, is a poor variable for numerical solution of the

GK equation. The obvious solution is to remove these cusps analytically using the normalized orbit time for

discretization in the poloidal direction. To this end, define

s0ðk; hÞ¼:

Z h

	hb

ghðhÞdh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 kB̂Bðh0Þ

q if k6
1

B̂BðpÞ
ðtrappedÞ;

Z h

	p

ghðhÞdh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 kB̂Bðh0Þ

q if k >
1

B̂BðpÞ
ðpassingÞ;

8>>>>><>>>>>:
ð26Þ

where hb is the solution of B̂BðhbÞ ¼ 1=k. s0ðk; hÞmust be computed numerically for general plasma equilibria

– a tedious but straightforward exercise in numerical analysis. Note that in Eq. (26), and in the rest of this

section, we suppress the radial dependence of s0ðk; r; hÞ, B̂Bðr; hÞ and ghðr; hÞ for brevity.
Next, we introduce a normalized orbit time, s, which runs from 0 to 2 for a given k and describes both

signs of velocity. In this way s parameterizes the solution on both Riemann sheets by subsuming the two

signs of velocity:

sðk; hÞ¼: s0ðk; hÞ=�ssðkÞ for 06 s6 1 ðr ¼ 1Þ;
2	 s0ðk; hÞ=�ssðkÞ for 1 < s6 2 ðr ¼ 	1Þ;

�
ð27Þ

where �ssðkÞ ¼ s0ðk; hbÞ for trapped particles, and �ssðkÞ ¼ s0ðk; pÞ for passing particles. The parallel advection

operator is reduced to one with constant velocity

oh
ot

þ Xð�; kÞ o
�hh

os
¼ 0; where Xð�; kÞ¼:

ffiffiffiffiffiffi
ms

m1

r ffiffiffiffiffiffiffiffiffi
2�Ts

p

�ssðkÞ : ð28Þ

High-accuracy numerical discretization schemes for this form of the equation are well documented.

Boundary conditions on physical distributions can be stated very simply: trapped are periodic on the in-

terval [0,2), co-passing are periodic on [0,1), and counter-passing are periodic on [1,2). However, the field-

aligned coordinate system [see Eq. (11)] requires that the functions h describing the passing population are

not periodic, but subject to phase conditions: hð1Þ ¼ Phð0Þ for co-passing, and hð2Þ ¼ Phð1Þ for counter-
passing. The important result is that as a function of s, the trapped distribution will be not only continuous,

but also smooth, across bounce points no matter what order difference scheme is used. The obvious physical
interpretation of the location of orbit-time gridpoints is that they are equally spaced in time, not space,

along an orbit. In particular, because they are highly stagnant near h ¼ �p, particles close to the trapped-

passing boundary benefit from equal-time spacing.

For finite-n modes, it is possible to solve Eq. (28) with a centered 5-point, fourth-order difference dis-

cretization formula

ohj
ot

þ X
12Ds

ð	�hhjþ2 þ 8�hhjþ1 	 8�hhj	1 þ �hhj	2Þ ¼ 0; ð29Þ

such that Ds¼: 2=ns. Unfortunately, this form will give rise to numerical instability for sufficiently small

values of n. A more robust form is obtained by adding a fourth-derivative smoother to Eq. (29).
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ohj
ot

þ X
12Ds

ð	�hhjþ2 þ 8�hhjþ1 	 8�hhj	1 þ �hhj	2Þ ¼ 	 jXj
12Ds

ðhjþ2 	 4hjþ1 þ 6hj 	 4hj	1 þ hj	2Þ: ð30Þ

The scheme above is the well-known third-order upwind method. In addition to the elimination of low-n
numerical instabilities, this upwind scheme will give proper Landau damping of n ¼ 0 GAMs. Note that the

dissipation, above, acts on h but not �hh. In fact, attempting to add upwind diffusion to �hh (that is, also to

fields) will generate a low-kr numerical instability which worsens as the square of the radial box size. The
difference scheme of Eq. (30) is exactly that used to discretize the parallel motion in Eq. (14). This is done at

every radius, energy and pitch angle. A plot showing the h-dependence of the electron distribution (ob-

tained from a numerical solution of the full GKM equations) appears in Fig. 1. Although ohh is singular at
bounce points, no grid instability is present.

5. Blending-function Maxwell solver

Since the distribution function h is computed at a different set of points fhjg for each discrete value of k,
there is no natural way to solve the Maxwell equations using finite-difference methods on a fixed poloidal

grid. Instead, we adopt a function-space approach, and expand the fields ð/n;AknÞ in series of uniform

polynomial blending functions. We will show that basis functions which incorporate the complex phase

conditions [see Eq. (12)] at 	p and p can be constructed from pairs of these blending functions. Equations

for the expansion coefficients are then obtained using the well-known Galerkin method.

In computing the poloidal dependence of the fields, there are a number of separate discretization effects

to consider. Since the fields are sums (integrals in the continuum limit) of distribution functions, low
velocity-space resolution will lead to poor poloidal accuracy – even if the there are no other sources

of discretization error. Conversely, even when a very large number of velocity-space grids are used, dis-

cretization error in the orbit-time integration of hsn will lead to poor poloidal accuracy – even if the

function-space method of the present section was exact. Thus, achieving an absolute level of accuracy in the

h-dependence of the fields requires sufficient convergence in both velocity-space and in orbit-time.

5.1. Examples of blending functions

A finite number of blending functions, NmðsÞ, are used to provide a basis for the field expansion. An

important feature of the Nm, however, is that they are all translates of a single function NðsÞ, such that

Nðs	 mÞ ¼ NmðsÞ. In practise, we use one of the following three types of blending functions:

Fig. 1. Numerical calculation of the poloidal dependence of the electron distribution function, for fixed energy, pitch angle and radius.

A third-order upwind scheme on an equally spaced s-grid (ns ¼ 16) is used. Solid (dotted) line indicates r ¼ 1 (r ¼ 	1). Note the

divergence of oh2=oh at h ¼ �hb.
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Piecewise linear:

N ð2ÞðsÞ¼: s if 06 s6 1;
2	 s if 16 s6 2:

�
ð31Þ

Piecewise quadratic:

N ð3ÞðsÞ¼:
s2=2 if 06 s6 1;
	ð3=2Þ þ 3s	 s2 if 16 s6 2;

ð3	 sÞ2=2 if 26 s6 3:

8<: ð32Þ

Piecewise cubic:

N ð4ÞðsÞ¼:
ð1=6Þs3 if 06 s6 1;
ð2=3Þ 	 2sþ 2s2 	 ð1=2Þs3 if 16 s6 2;
	ð22=3Þ þ 10s	 4s2 þ ð1=2Þs3 if 26 s6 3;

ð1=6Þð4	 sÞ3 if 36 s6 4:

8>><>>: ð33Þ

In Fig. 2 we give plots of N ð3Þ
m for m ¼ 	2; . . . ; 4.

5.2. Representation of a quasi-periodic function

It remains to construct meaningful set of basis vectors from the prototype blending functions given

above. Let us begin by considering a function f ðhÞ which is not periodic in h, but satisfies a phase condition

f ðh þ 2pÞ ¼ Pf ðhÞ. On the infinite domain ð	1;1Þ we can write

f ðhÞ ¼
X1
m¼	1

cmNmðh=DhÞ; ð34Þ

¼
Xnb
m¼1

½� � � þ cm	nbNm	nb þ cmNm þ cmþnbNmþnb þ � � ��; ð35Þ

where Nmðh=DhÞ ¼ Nðh=Dh 	 mÞ, Dh¼: 2p=nb, and nb is the number of basis functions used to represent one

2p-segment of the function f . The phase condition in h translates into an equivalent phase condition for the

blending coefficients themselves; namely cmþnb ¼ Pcm. The function f is therefore completely described by

the coefficients fc1; . . . ; cnbg and basis functions fF1; . . . ; Fnbg according to

f ðhÞ ¼
Xnb
m¼1

cmFmðhÞ; where FmðhÞ ¼ Nðh=Dh 	 mÞ þPNðh=Dh 	 m	 nbÞ: ð36Þ

Fig. 2. Quadratic blending functions, N ð3Þ
m ðsÞ, for nb ¼ 6.
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In choosing a value of the parameter nb, one is constrained by the number of points used in the orbit time

discretization, ns. Given that a passing particle is described by ns=2 orbit points, choosing values of nb larger
than ns=2 will lead to a breakdown of the method since there will be less than one orbit point per blending

function segment. For the simulations presented in this paper, we have found that nb ¼ 6 and ns ¼ 20 are

efficient choices. However, we expect that the simulation of plasmas with strong equilibrium shaping, will

require a simultaneous increase of both nb and ns.

Fig. 3 shows the nb ¼ 6 quadratic basis functions fF1; . . . ; F6g for P ¼ 	1. We remark that since P is

generally a complex number, the basis functions are also complex. If the function f ðhÞ is known, then we

can determine the cm by demanding that the error is orthogonal to the space spanned by the fFmg. That is,
we multiply by F �

m and integrate to obtain

cm ¼ ðP	1Þmm0bm0 such that bm ¼
Z p

	p
dhF �

mðhÞf ðhÞ; ð37Þ

where P is the hermitian projection matrix.

Pmm0 ¼:
Z p

	p
dhF �

mðhÞFm0 ðhÞ: ð38Þ

A few well known but important observations concerning the approximation properties of the linear,

quadratic and cubic functions should be stated. In a region of extremely rapid field variation, the cubic

approximation is the least robust – suffering from overshoot/undershoot oscillations. Conversely, as the
fields become progressively smoother, the linear approximation will give the poorest interpolation accu-

racy. A further undesirable property of the linear approximation is its discontinuous first derivative. Al-

though there is no general rule or obviously best interpolation order for all situations, we find that the

piecewise quadratic functions are sufficiently accurate and robust for all cases studied to date.

5.3. Solution of the Maxwell equations

It will be convenient in what follows to abbreviate the radial operators which appear in the Maxwell

equations as

LP ¼
:
a1ð1	RÞ; ð39Þ

LA¼
: 	 2q2

s

be

r2
?: ð40Þ

Fig. 3. Quadratic basis functions, FmðhÞ, for nb ¼ 6 and phase P ¼ 	1.
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In terms of these operators, the Maxwell equations become (omitting the toroidal mode index for brevity)

LP/ ¼ V1½Gh1� 	 V2½h2�; ð41Þ

LAAk þ a1V1½v2k1Ak� þ a2V2½v2k2Ak� ¼ V1½vk1Gh1� 	 V2½vk2h2�: ð42Þ

With the arguments of Section 3.3 in mind, it must be strongly emphasized that the third term on the LHS

of Eq. (42) must not be evaluated analytically. That is, we must not set V2½v2kAk� ¼ ðm1=m2ÞT2Ak. Doing so will

cause an imperfect cancellation with terms in V2½vkh2�, leading to an incorrect description of Alfv�een waves.
On the LHS of Eq. (42), we have also set R ! 1. It is easy to show that this is roughly equivalent to a

negligibly small shift in be. Begin by formally expanding both fields in blending series

/iðhÞ ¼
Xnb
m¼1

~//i
mF

i
mðhÞ; ð43Þ

AikðhÞ ¼
Xnb
m¼1

~AAikmF
i
mðhÞ: ð44Þ

Substituting these into Eqs. (41) and (42), respectively, we find

Lii0

P ðhÞ
X
m

~//i0

m0F i
0

m0 ðhÞ ¼ V1½ðGh1Þi� 	 V2½hi2�; ð45Þ

Lii0

A ðhÞ
X
m

~AAi
0

km0F i
0

m0 ðhÞ þ a1V1½ðvik1Þ
2
X
m0

~AAikm0F im0 ðhÞ� þ a2V2½ðvik2Þ
2
X
m0

~AAikm0F im0 ðhÞ�

¼ V1½vik1ðGh1Þ
i� 	 V2½vik2hi2�: ð46Þ

In order to obtain equations for the blending coefficients ~//i
m and ~AAikm, we multiply Eqs. (45) and (46) by

F imðhÞ
�
and integrate over ½	p; pÞ to find

ðMP Þii
0

mm0
~//i0

m0 ¼ ðSP Þim; ð47Þ

ðM1
AÞ
ii0

mm0 ~AAi
0

km0 þ ðM2
AÞ
i
mm0 ~AAikm0 ¼ ðSAÞim; ð48Þ

where

ðMP Þii
0

mm0 ¼
Z p

	p
dhF imðhÞ

�
Lii0

P ðhÞF i
0

m0 ðhÞ; ð49Þ

ðM1
AÞ
ii0

mm0 ¼
Z p

	p
dhF imðhÞ

�
Lii0

A ðhÞF i
0

m0 ðhÞ; ð50Þ

ðM2
AÞ
i
mm0 ¼ a1J0FV1½ðvik1Þ

2F imðhÞ
�F im0 ðhÞ=Ji� 	 a2J0FV2½ðvik2Þ

2F imðhÞ
�F im0 ðhÞ=Ji�; ð51Þ

ðSP Þim ¼ J0FV1½F imðhÞ
�
Ghi1=J

i� 	J0FV2½F imðhÞ
�hi2=J

i�; ð52Þ

ðSAÞim ¼ J0FV1 v
i
k1F

i
mðhÞ

�
Ghi1=J

i
h i

	J0FV2 v
i
k2F

i
mðhÞ

�hi2=J
i

h i
: ð53Þ
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The J0 factors in the moment formulae arise directly from the identityZ p

	p
dhf ðhÞ ¼ J0F½f ðhÞ=JðhÞ� ð54Þ

with J and J0 defined in Eq. (3).
The matrices ðMP Þii

0

mm0 and ðM1
AÞ
ii0

mm0 which appear above are sparse in the radial index i. It is necessary to

exploit this sparse structure to minimize computational time and storage. In gyro we solve the matrix

problems for the desired blending coefficients ~// and ~AkAk using UMFPACK [33]. Discretization of the op-

erators FV1 and FV2 is discussed in Section 6.

5.3.1. Alternative Poisson solver

In the solution of the Poisson equation, there is no analog of the delicate mass-ratio cancellation of

Amp�eere�s law. We may therefore use an alternative algorithm which retains the diagonal-in-h nature of the

continuous equation. An additional parameter, nh, is added to the overall scheme, which can be summa-

rized thusly: (1) project velocity integrals (densities) onto the space of blending functions; (2) evaluate the

blending representation of the densities at nh poloidal angles hj; (3) solve, at every hj, a radial matrix

problem for the potential /i
j; (4) from the /i

j obtain a blending representation /iðhÞ. The formulae to
accomplish steps (1)–(3) are given by

a1 dii
0

�
	Rii0

j

�
/i0

j ¼ dnij; ð55Þ

dnij ¼
Xnb
m¼1

fdndnimF imðhjÞ; ð56Þ

fdndnim ¼ ðP	1Þimm0 ðSP Þim; ð57Þ

where P is defined in Eq. (38), and SP in Eq. (52). This is enough to compute /i
j at discrete angles hj. The

final step proceeds by defining a continuous, piecewise-linear function /̂/iðhÞ such that /̂/iðhjÞ ¼ /i
j. Ex-

plicitly,

/̂/iðhÞ¼: hjþ1 	 h
Dh

� �
/i
j þ

h 	 hj
Dh

� �
/i
jþ1 for hj6 h6 hjþ1; ð58Þ

where Dh¼: 2p=nh. Then, the blending coefficients ~//i
m are computed by inverting

/̂/iðhÞ ¼
Xnb
m¼1

~//i
mFmðhÞ: ð59Þ

The parameter nh is adjustable independently of all other grid dimensions. For simulations with adiabatic

electrons and quadratic blending functions, it is possible although not advisable to do simulations with

nh ¼ nb. An improvement in accuracy (important for electromagnetic simulations) is realized when dou-

bling the resolution to nh ¼ 2nb. This is unsurprising, since there is some accuracy loss when using the linear

interpolation defined by Eq. (58) with quadratic blending functions. An obvious generalization of this

method (not implemented) is to use a quadratic interpolation with quadratic blending functions and a cubic

interpolation with cubic blending functions, rather than Eq. (58) in all cases.
Finally, we remark that for realistic problem sizes, this alternative method is much faster than the full

blending-space method of the previous section.
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6. Numerical evaluation of FV

The Maxwell solvers of the previous section are written in terms of the operators FV1 and FV2. In the

present section, we discuss quadrature methods for evaluation of these operators. Since the techniques

which follow apply independently to both species, we omit species indices for brevity.

6.1. Decomposition of FV

Since V ½1� ¼ 1, it follows automatically that FV ½1� ¼ 1. An equivalent statement of this result is em-

bodied in the identity

1

2
ffiffiffi
p

p
Z 1

0

d�e	�
ffiffi
�

p Z k�

0

dk�ssðkÞ
I

ds ¼ J0 ð60Þ

with k� ¼ 1=B̂Bðr; 0Þ the maximum possible value of k, and J0 defined in Eq. (2). Above, we have used the
integral identity

X
r

Z p

	p
dhghðr; hÞ

Z 1=B̂Bðr;hÞ

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 kB̂Bðr; hÞ

q ¼
Z k�

0

dk�ssðkÞ
I

ds: ð61Þ

Since the numerical evaluation of integrals of this type will involve separate integration weights in each of

the variables �, k and s, it is useful to make the decomposition FV ¼ V� � Vk � Vs, where

V�½h�¼:
2ffiffiffi
p

p
Z 1

0

d�e	�
ffiffi
�

p
h; ð62Þ

Vk½h�¼:
1

2J0

Z k�

0

dk�ssðkÞh; ð63Þ

Vs½h�¼
: 1

2

I
dsh: ð64Þ

These are normalized so that V�½1� ¼ Vk½1� ¼ Vs½1� ¼ 1. The task at hand, now, is the construction of discrete

forms of these operators, and therefore of FV .

6.2. Energy integration

To develop a quadrature method for the energy integral, we split the interval of integration in V� –

defined in Eq. (62) – into two regions: ½0; ��Þ and ½��;1Þ, where �� is the maximum energy gridpoint (input).

Integration over the first interval is done by changing variables according to

xð�Þ¼: 2ffiffiffi
p

p
Z �

0

d�e	�
ffiffi
�

p
: ð65Þ

We let x0¼: xð��Þ, and evaluate the integral using Gauss–Legendre integration [34] over n� 	 1 points

Z x0

0

dxh½�ðxÞ� ’
Xn�	1

i¼1

wih½�ðxiÞ�: ð66Þ
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The abscissae and weights ðxi;wiÞ are the usual Gauss–Legendre ones. Note that we must solve the non-

linear equations xi ¼ xð�iÞ for �i to obtain the energy gridpoints. With the dominant part of the energy

integration done, we evaluate the remaining, infinite integral according to

2ffiffiffi
p

p
Z 1

��
d�e	�

ffiffi
�

p
hð�Þ ’ hð��Þ 2ffiffiffi

p
p

Z 1

��
d�e	�

ffiffi
�

p
¼ ð1	 x0Þhð��Þ: ð67Þ

This gives the final weight 1	 x0 at the energy gridpoint ��, for a total of n� gridpoints. We remark that this

method has the desirable propertyXn�
i¼1

wi ¼ 1 such that 8i;wi > 0: ð68Þ

Some sample abscissae and weights are given in Table 2 to limited precision (10 significant digits). Note that

it is straightforward to generate these, and thus to enforce the sum in Eq. (68), to machine precision. The

abcissae and weights are unique for a given n� and ��. Outside of this section, to avoid ambiguity, we will

use index i� and weight wð�Þ
i� to refer to energy integration.

6.3. k integration

The k integration follows essentially the same strategy as the energy integration, with only minor dif-

ferences. First, introduce the integration variable

xðkÞ¼: 1

J0

Z k

0

dk0 �ssðk0Þ: ð69Þ

Then, then Vk can be expressed as

Vk½h� ¼
Z 1

0

dxh½xðkÞ�: ð70Þ

Because h is rapidly varying across the trapped-passing boundary at xt ¼ xðktÞ, where kt ¼ 1=BðpÞ, it is wise
to split the previous integral into two regionsZ 1

0

dxh½xðkÞ� ¼
Z xt

0

dxh½xðkÞ� þ
Z 1

xt

dxh½xðkÞ�: ð71Þ

Gauss–Legendre rules are then applied to each integral separately to determine abscissae and weights

ðxi;wiÞ. Then, as before, the equations xi ¼ xðkiÞ must be inverted numerically to obtain the gridpoints ki.

Table 2

Sample energy abscissae and weights

n� ¼ 4, �� ¼ 3:0 n� ¼ 6, �� ¼ 4:0

i �i wi �i wi

1 0.2924572707 0.2467749375 0.1625303849 0.1130127375

2 1.0404041729 0.3948399000 0.5442466206 0.2283030745

3 2.2531263847 0.2467749375 1.1228428641 0.2713566704

4 3.0000000000 0.1116102251 1.9784353093 0.2283030745

5 3.2361246631 0.1130127375

6 4.0000000000 0.0460117057
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We emphasize that there is no assumption of continuity across the trapped passing boundary. In fact, in

the collisionless limit, we do not expect the distribution to be continuous there. With weak collisions, we

expect the formation of of a boundary layer around x ¼ xt. In the latter case, we expect good layer reso-

lution because the Gauss–Legendre scheme puts integration abcissae very close to (but not on) xt. When
combined with the orbit-time grid, the k integration abcissae provide the ðk; vk=vÞ gridpoint distribution

shown in Fig. 4.

Sample values of abscissae and weights are given in Table 3 for a circular equilibrium with r=R0 ¼ 1=6.
Outside of this section, to avoid ambiguity, we will use index ik and weight wðkÞ

ik to refer to pitch-angle

integration.

6.4. Discretization summary

Our methods for solution of the Maxwell equations have the implication that it is not V but FV for

which a discrete form is required. But we have already done enough to show that the discretization takes

the form

FV ½h� !
Xn�
i�¼1

wð�Þ
i�

Xnk

ik¼1

wðkÞ
ik

Xns

is¼1

wðsÞ
is hi�ikis ; ð72Þ

where, so far, no radial discretization has been employed. The s-weights are simply wðsÞ
is ¼ ð1=2ÞDs ¼ 1=ns.

The numerical representation of the weights is such that when h ¼ 1, the sum in Eq. (72) is unity to machine

precision.

Fig. 4. Gridpoint distribution in the ðh; nÞ-plane, where n¼: vk=v. Grid dimensions are npass ¼ ntrap ¼ 4 and ns ¼ 20.

Table 3

Sample k weights for npass ¼ ntrap ¼ 3

i xi ki wi

1 0.0701916516 0.1353809983 0.1730025988

2 0.3114046777 0.5237287429 0.2768041580

3 0.5526177038 0.7871934230 0.1730025988

4 0.6653193692 0.8581589333 0.1047751790

5 0.8114046777 0.9778736670 0.1676402866

6 0.9574899862 1.1217887702 0.1047751790
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7. Radial discretization

7.1. Choice of radial box

For nonlinear simulations, the most general criterion for radial box selection is convergence of turbulent

diffusivity with increasing box length. For linear and nonlinear flux-tube simulations, however, we can

employ a more systematic method for choosing the radial box size. In a linear flux-tube simulation with

q0 ¼ qðr0Þ, kh ¼ nq0=r0, and nonzero magnetic shear, the most unstable ballooning mode has potential

functions /n and Akn which are radially periodic with wavelength ‘0 ¼ 1=ðjsjkhÞ. We can illustrate the origin
of the length ‘0 by a brief consideration of the ballooning transform [35]. Begin by writing the potential for

a single toroidal harmonic, and expand qðrÞ about r ¼ r0

/ðu; r; hÞ ¼ e	inðu	qhÞ/nðr; hÞ � e	inðu	q0hÞþihðr	r0Þ=‘0/nðr; hÞ: ð73Þ

Next, write /n as a Fourier series

/nðr; hÞ ¼
X
p

/pðhÞe2pipðr	r0Þ=‘0eih0ðr	r0Þ=‘0 ; ð74Þ

where h0 is the so-called ballooning angle. Note that when h0 ¼ 0, the function /n is periodic on
r 	 r0 2 ½0; ‘0�. When h0 ¼ p, /n is periodic on r 	 r0 2 ½0; 2‘0�, and so on. For our present purposes, it is

enough to consider the most unstable mode for which h0 ¼ 0. Generalization to arbitrary h0 is trivial. Upon

introducing the ballooning potential

/Bðh þ 2ppÞ¼: /pðhÞe	inq02pp ð75Þ
it follows that the physical potential has the form

/ðu; r; hÞ ¼
X
p

e	inðu	q0hpÞeihpðr	r0Þ=‘0/BðhpÞ: ð76Þ

Above, hp¼
:
h þ 2pp 2 ½	1;1�. This validates our assertion that for the most unstable linear mode, it is

natural to employ a radial box of length ‘0. Nonlinear simulations, of course, cannot be restricted to h0 ¼ 0

and so much larger boxes are generally required. For the nonlinear simulations presented herein, we have

used ‘ ¼ 24‘0, where ‘0 is set by the reference mode khqs ¼ 0:3. We will discuss the consequences of these

choices in more detail later. Note that this selection method arose primarily for historical reasons, and we

reiterate the point that for nonlinear simulations, one must inevitably increase the box size until the dif-
fusion in the radial region of interest becomes independent of size.

In the sections that follow, we define and discuss the discretization of all radial operators used in gyro.

7.2. Derivative operators

The differential band width in the radial direction is denoted by the parameter id . First and second de-

rivatives can be discretized using nd-point centered differences, where nd¼
:
2id þ 1. These are

Dii0

1 f
i0 ¼ 1

Dr

Xid
m¼	id

c1mf iþm; ð77Þ

Dii0

2 f
i0 ¼ 1

ðDrÞ2
Xid
m¼	id

c2mf iþm; ð78Þ
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where

c1m ¼
X
p 6¼m

1

m 	 p

Y
j 6¼m;p

ð	jÞ
m 	 j

; ð79Þ

c2m ¼
X
p 6¼m

1

m 	 p

X
q 6¼m;p

1

m 	 q

Y
j 6¼m;q;p

ð	jÞ
m 	 j

: ð80Þ

The parameter nd controls the formal truncation error of the difference approximation. This is O½ðDrÞnd	1�
for both the D1 and D2. For the first derivative appearing in the nonlinear terms, and in the Laplace
operator in the Amp�eere equation, we set or ! Dii0

1 . The second derivative appears only in the Amp�eere
equation, and for that we set orr ! Dii0

2 . It is well known, however, that ensuring the quality of a difference

scheme requires more than a simple-minded consideration of truncation error. This is especially true for

discretization of advection equations, where the addition of dissipation adds greatly to the numerical fi-

delity of the scheme (see, for example, Section 10 in connection with axisymmetric modes). Indeed, we have

found that adding upwind dissipation to radial advection terms is required to smooth over sub-grid-scale

numerical disturbances associated with electron Landau layer physics. Experience with implicit linear codes

like gks have shown that accurate calculation of eigenvalues for low-frequency modes often does not
require resolution of this layer. Analogously, gks solves the layer resolution problem by truncating allowed

radial wavenumbers via zero boundary conditions in ballooning-angle. In both codes, it is found that as

resolution is increased (as the radial grid is refined in gyro, or as the gks boundary conditions are moved

outward in ballooning angle) the eigenvalue is invariant. That being said, there are case (for high b or close

to marginal stability) where a very fine radial grid must be used.

To construct an arbitrary-order upwind scheme, we begin by writing the centered ðnd 	 1Þth derivative as

Dii0

� f
i0 ¼ 	 1

ðDrÞnd	1

Xid
m¼	id

ð	1Þm nd 	 1

m þ id

� �
f iþm: ð81Þ

Discretization of the advective radial derivative in Eq. (14) then proceeds according to

vor ! vDii0

1 	 cjvjDii0

� ; where c¼: jc1id jðDrÞ
nd	2

: ð82Þ

The overall normalization for the dissipation, c, is chosen so as to recover the usual first and third-order

upwind schemes. Setting v ¼ 1, we consider the action of this discretization on a pure wave,

ðD1 	 cD�Þeikr ¼ iKðkÞeikr: ð83Þ

While the exact result is evidently KðkÞ ¼ k, the discretization yields a complex K which satisfies

limk!0 K=k ¼ 1. Curves of ReKðkÞ and ImKðkÞ are shown in Figs. 5 and 6, respectively for Dr ¼ 1 and

nd ¼ 3; 5; 7; 9. Some comments regarding interpretation of these results is in order. Consider 100 grid-
points in a 100qs box (i.e., Dr ¼ qs). A spectral approximation will interpret any grid-to-grid oscillation as

a wave with krqs ¼ p. Fig. 5 shows that one can achieve essentially the same accuracy with an nd ¼ 9

finite-difference approximation using 128 gridpoints. The nd ¼ 9 derivative maintains good accuracy up to

about krqs ¼ 0:75p, and by increasing the density of gridpoints by a factor of 128=100, we can describe

waves up to krqs � p. Moreover, very large boxes will benefit greatly from the locality of finite-difference

operators.

Note that the nd ¼ 5 result corresponds to the upwind scheme of Section 4. In general, we never use

nd ¼ 3 because of the very strong artificial damping of long waves ðk < p=2Þ as shown by the dotted curve
in Fig. 6.
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7.3. The gyro-operators

We have had very good results using truncated pseudospectral representations for the operators G and

R, even when the radial domain is nonperiodic. The validity of this method relies on the observation that

the numerical contribution to the gyroaverage decays rapidly at distances beyond a few gyroradii from the

gyrocenter. For linear benchmarks, when the radial domain is only one period of the ballooning mode, we

generally use the fully pseudospectral representation with ng ¼ nr for G and R. Here, ng 6 nr is the number

points in the gyro-operator stencil.

Analytically, the gyroaverage is an integral operator which acts on a field, f ðr; h;uÞ as

Gf ¼ 1

2p

I
d#
X
n

fnðr0ð#Þ; h0ð#ÞÞe	inf0ð#Þ; ð84Þ

where the primed coordinates are evaluated along a gyro-orbit. The integration variable # is the gyro-angle.
The #-variation of h0 in the integrand is dominated by the rapidly varying exponential, and in the gyr-

okinetic ordering it is consistent to set h0ð#Þ ¼ h in fn. If we further linearize the arguments in q?, then the

desired integral is

ðGf Þn ¼
1

2p

I
d#fnðr þ q?jrrj cos#; hÞe	inq?ðfx cos #þfy sin#Þ; ð85Þ

Fig. 5. Wavenumber dependence of finite-difference derivatives, D1, for nd ¼ 3; 5; 7; 9. The thick line shows the exact result. Larger

values of nd have higher maxima.

Fig. 6. Wavenumber dependence of the dissipation operator, cD�, for nd ¼ 3; 5; 7; 9. Larger values of nd have smaller maximum

dissipation.
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where fy¼
: khgq, fx ¼ ½½kx=ky ��fy and q? ¼ qs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�kB̂BT

p
=ðgrB̂BÞ (see Section 2). If fn is Fourier decomposed

radially (assume for the moment that fn is L-periodic in r) according to

ðfnÞi ¼
XJ	1

p¼	J
ðeffnÞp e2pipri=L ¼

XJ	1

p¼	J
KipðeffnÞp; where ðK	1Þip ¼

1

2J
Ky

ip ð86Þ

with J¼: nr=2, then the gyroaveraging can be computed in a straightforward way. Evidently,

ðGf Þin ¼
XJ	1

p¼	J
e2pipri=LJ0 kipq?

� �
ðeffnÞp; ð87Þ

where

kip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ppjrrji=L	 fixÞ

2 þ ðfiyÞ
2

q
: ð88Þ

When ng < nr, it is convenient to define the truncation in terms of the gyroaverage band width, ig. This
number is increased until results converge to desired accuracy. For a typical 100qs box and instabilities with

kiqs < 0:7, converged results are obtained with the choices nr � 128 and ig � 6.

Gii0

n ¼
1
2J

PJ	1

p¼	J
zi	i

0
p J0ðkipq?Þ if ji	 i0j6 ig;

0 if ji	 i0j > ig;

8>><>>: ð89Þ

Rii0

n ¼
1
2J

PJ	1

p¼	J
zi	i

0
p e	b

i
p I0ðbipÞ if ji	 i0j6 ig;

0 if ji	 i0j > ig

8<: ð90Þ

with zp ¼ expðipp=JÞ, ðGf Þin¼
:
Gii0

n f
i0
n , and bp ¼ ðqskp

ffiffiffiffi
T

p
=grB̂BÞ2. J0 is a Bessel function of the first kind, and I0

is a modified Bessel function of the first kind.

7.4. Nonperiodic boundary conditions

Flux-tube boundary conditions effectively eliminate the inner and outer radial boundaries by making the

quantities ð/n;Akn; hsnÞ periodic in r. For example,

/nðr1; hÞ ¼ /nðr2; hÞ: ð91Þ

Use of this boundary condition is very useful for local linear analyses (all the linear results presented in this

report use flux-tubes) and computationally efficient for restricted nonlinear studies. However, the flux-tube

mode of operation is incompatible with variation of the equilibrium profiles. In order to study physical

effects associated with profile variation, it is necessary to abandon flux-tubes and use some type of non-

periodic radial boundary condition. In the design of nonperiodic end conditions, we have attempted to
minimize as much as possible the effect of the boundaries on the interior dynamics. To this extent, our goal

was to construct �benign’’ rather than physical end conditions. The latter is a challenging problem for future

work.

In Section 10 we discuss the performance of these boundary conditions, and show that they yield the

same interior levels of diffusivity as flux-tubes when profiles are held constant.

To solve the equations in a radially nonperiodic annulus, we divide the full domain into various sub-

domains.
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• Evanescent Region (r < rLe; r > rRe)

h and ð/;AkÞ are taken to be evanescent. For example, h is given by

hðrÞ ¼ hðrLeÞe	c1ðrLe	rÞ if r < rLe
hðrReÞe	c1ðr	rReÞ if r > rRe

�
ð92Þ

with completely analagous formulae for ð/;AkÞ. We have had good results with c1 � 1=Dr.
• Buffer Region (r < rLb; r > rRb)

h is again taken to be evanescent,

hðrÞ ¼ hðrLbÞe	c1ðrLb	rÞ if r < rLb
hðrRbÞe	c1ðr	rRbÞ if r > rRb

�
ð93Þ

but ð/;AkÞ are obtained from the Maxwell equations.

• Damping Region (r < rLd; r > rRd)

In this region, a Krook-type artificial damping term, 	mdh, is added to the RHS of the GK equations.
This is only necessary for axisymmetric modes to inhibit the development of shear layers. ð/;AkÞ are
obtained, without any added dissipation, from the Maxwell equations.

• Interior region (rLd < r < rRd)

Inside the ‘‘clean’’ computational region, h is calculated from the gyrokinetic equations, and ð/;AkÞ
from the Maxwell equations. No artificial effects are added.

Geometrically, these regions are embedded such that rRd < rRb < rRe and rLe < rLb < rLd. See Section 10 for

further discussion.

8. Nonlinear dynamics

8.1. Discretization scheme

Our experience has shown that numerical stability and robustness for the nonlinear problem can be

enhanced by treating the discrete form of the nonlinear terms in a ‘‘conservative’’ manner. First, let us begin

by writing the continuous form of the bracket appearing in Eq. (14)

fF ;Gg ¼ oF
oa

oG
or

	 oG
oa

oF
or

; ð94Þ

where F and G are arbitrary phase-space functions. To make contact with Eq. (14), we set F ! Gu and

G! h. When the angle a is represented by a finite Fourier series, the bracket becomes

fF ;Ggn ¼
X
n0

n0Fn0
oGn	n0

or

�
	 n0Gn0

oFn	n0
or

�
: ð95Þ

However, as an alternative to Eq. (94), we can write the bracket in conservative form

fF ;Gg ¼ o

oa
F
oG
or

� �
	 o

or
F
oG
oa

� �
: ð96Þ

This has Fourier components

fF ;Ggn ¼
X
n0

nFn0
oGn	n0

or

�
	 n0

o

or
ðFn	n0Gn0 Þ

	
: ð97Þ
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It is desirable to start with this form prior to performing the radial discretization. In terms of the discrete

form of the derivative operator, D1, the discrete form of the nonlinear operator is

fF ;Ggin ¼
X
n0

nF in0D
ii0

1 G
i0

n	n0

h
	 n0Dii0

1 F i
0

n	n0G
i0

n0

� �i
: ð98Þ

This is the expression used in gyro. Now, let us assume, in what follows, that the radial domain is periodic.

Deviations from the results below will as a consequence be solely limited to boundary effects. The lowest

integral invariant, which measures the rate of change of density along the nonlinear flow, isZ
da
Z

drfF ;Gg !
X
i

fF ;Ggi0: ð99Þ

Using Eq. (98), the sum above vanishes for all D1 which satisfy
P

iD
ii0

1 a
i0 ¼ 0 for all vectors a. Centered-

difference formulae of all orders for D1, as summarized in Section 7, will satisfy this condition. The next

invariant, connected with the rate of change of entropy, isZ
da
Z

drGfF ;Gg !
X
n

X
i

Gi
	nfF ;Gg

i
n: ð100Þ

Some algebra gives (without assumption of a product rule for D1),X
n

X
i

Gi
	nfF ;Gg

i
n ¼ 	

X
n;n0

n0 Gi
	nD

ii0

1 F i
0

n	n0G
i0

n0

� �h
þ F in	n0G

i
n0D

ii0

1 G
i0

	n

i
: ð101Þ

This sum vanishes for all D1 which satisfyX
i

aiDii0

1 b
i þ biDii0

1 a
i0 ¼ 0 8a; b: ð102Þ

Once again, centered difference operators of all orders will satisfy this constraint. Although the order of D1

is chosen at run-time, we typically use a 7-point (sixth order) rule. We have found that discretization

schemes which leave residuals in Eqs. (99) and (100) were generally much more susceptible to numerical

instability than the conservative methods.

8.2. Definitions of fluxes and diffusivities

One of the primary goals of gyro is to compute nonlinear, self-consistent fluxes and diffusivities for

given parameters and toroidal equilibria. For each species separately, we define the E � B flux (superscript

‘‘es’’) as

Ces
n ðr; hÞ

CðesÞ
T ðr; hÞ

� �
¼ i
X
n

khqs

gr
/�
nðr; hÞV

1

�T

� �
ðGhÞn

� 	
ð103Þ

and magnetic flutter (superscript ‘‘em’’) flux as

Cem
n ðr; hÞ

CðemÞ
T ðr; hÞ

� �
¼ 	i

X
n

khqs

gr
A�
knðr; hÞV

1

�T

� �
vkðGhÞn

� 	
: ð104Þ

The subscripts n and T indicate particle and thermal fluxes, respectively. For each species separately, and

for electrostatic and electromagnetic components separately, we write the gyroBohm-scaled particle and
thermal diffusivities as
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DðrÞ¼: Dp

ðcs=aÞq2
s

¼ F½Cn�=ðn=LnÞ
ðcs=aÞq2

s

; ð105Þ

vðrÞ¼: vp

ðcs=aÞq2
s

¼ F½CT�=ðnT =LT Þ
ðcs=aÞq2

s

: ð106Þ

Above, Dp and vp are the physical diffusivities. In this report, we normally quote radial averages of the

diffusivity, �DDp and �vvp.

9. Time advance method

With all spatial operators discretized, and the fields ð/;AkÞ considered as functionals of h1 and h2, we are
left with a very large system of coupled ordinary differential equations (ODEs) for the totality of all dis-

tribution functions at all gridpoints. This is solved as an initial value problem

d~hh
dt

¼ ~UUð~hhÞ; ~hhðt0Þ ¼~hh0 with t 2 ½t0; t1�: ð107Þ

Here, ~hh¼: hs;n;i;i�;ik;is and ~UU¼: RHSs;n;i;i�;ik;is . The MOL approach is particularly attractive since we can

choose from a large number of very powerful, well studied, high-order ODE integrators to march Eq.

(107) forward in time. For the results presented in this paper, we use the explicit Runge–Kutta (ERK)

method RK4(3)5[2R+]C (with fixed timestep) as described in [36]. This is a five-stage, fourth-order

accurate scheme with good linear stability properties (high advective and viscous Courant limits), good

nonlinear stability (contractivity) properties, and an embedded third-order method to monitor the time-
integration error. We find that the benefits of error-estimation more than justify the added cost

associated with computing an extra stage. In general, ERK methods are suitable only for the colli-

sionless part of the problem. Collisions are treated using operator splitting, as described in the next

section.

The benefits of ERK methods become especially apparent when considering nonlinear problems.

Both the E � B and magnetic flutter nonlinearities are computed with full fourth-order accuracy in

time.

10. Adiabatic electron benchmarks

10.1. Definition of parameter sets

For benchmarking and testing we nominally use either the Cyclone DIII-D base case [34] or the Waltz

standard case [7] parameter sets. There are summarized in Tables 4 and 5 respectively. All calculations in

this report were performed using the s	 a model equilibrium with aMHD ¼ 0:0 and 1=B̂B! 1 in xð1Þ
ds . Also,

for simplicity we have set T1 ¼ T2 throughout.

Table 4

Cyclone DIII-D base case parameter set

r=a R0=a R0=Ln R0=LT q s

0.5 2.78 2.2 6.9 1.4 0.8
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10.2. Linear ITG modes

For the adiabatic electron model, we show complete agreement with the gs2 code [17] for the calculation

of Cyclone DIII-D base case ITG modes. This comparison is given in Figs. 7 and 8.

10.3. Rosenbluth–Hinton residual flows

We compare a numerical calculation of the time evolution of the axisymmetric potential with the results

of Hinton and Rosenbluth [38,39]. They have shown that a rigorous initial value calculation leads to de-

caying oscillations of geodesic acoustic modes (GAMs) with finite residual potential. The GAM frequency
and damping rate are given by

xG ¼ 7

4

�
þ T2
T1

�1=2 v1
R

and mG ¼ 	xGe	q
2

; ð108Þ

Table 5

Waltz standard case parameter set

r=a R0=a R0=Ln R0=LT q s

0.5 3.0 3.0 9.0 2.0 1.0

Fig. 8. Same as previous figure, but showing frequency comparison.

Fig. 7. Linear mode growth rates versus khqs for the Cyclone DIII-D base case. Curves are gyro results, squares are results from

Dorland�s gs2 code.
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respectively, with v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T1=m1

p
. The expression for xG which appears in Eq. (108) is more accurate than

the estimate xG � v1=R which appears in [38]. When combined with the formula for the residual potential,

we expect a long-wavelength initial disturbance to behave as

/kðtÞ
/kð0Þ

¼ ð1	 ARÞe	mGt cosðxGtÞ þ AR; where AR ¼
1

1þ 1:6q2=
ffiffiffiffiffiffiffiffiffi
r0=R

p : ð109Þ

Fig. 9 shows good agreement between the code and analytical results, even for the Landau damping rate.

We remark that upwind differencing according to Eq. (30) is necessary to obtain this result. Attempting to

use Eq. (29) for differencing of the axisymmetric GK equations leads to the erroneous result of Fig. 10. The

physical interpretation is that upwind dissipation enforces causality by selecting the decaying mode. In an
analytic solution of the Landau problem, one must analogously deform the integration contour to select the

decaying mode of oscillations.

10.4. Nonlinear flux-tube benchmarks

A landmark paper which collected and compared results from preeminent ITG turbulence codes and

models was authored by members of the Cyclone group [37]. The motivation for this work arose primarily

from conflicting ITER [40] performance predictions supplied by these codes and models. Following the

Fig. 10. Calculation of axisymmetric flow of previous figure, but without poloidal upwind dissipation. The collisionless damping effect

is improperly treated.

Fig. 9. Numerical calculation of axisymmetric poloidal flow (solid curve) and comparison with Rosenbluth–Hinton theory (dotted

curve). Analytic residual is shown as dotted horizontal line.
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comparison presented in that work, we scan vi versus R0=LT and compare with results from the LLNL and

U. Colorado flux-tube PIC codes. The grid resolution used for all runs is summarized in case 1 of Table 6.

The radial box was fixed at ‘ ¼ 100qs (this is equivalent to 24‘0 with khqs ¼ 0:3, s ¼ 0:8 and ‘0 as defined in

Section 7).

Results of the parameter scan are shown in Fig. 11, indicating excellent agreement at lower driving rates,

with some anomaly at higher driving rates – we hope to identify the cause of, and resolve, this difference

shortly. Note that the onset of the ‘‘Dimits shift’’ [41] region (a region of almost zero transport despite the

presence of unstable linear modes) at R0=LT ’ 6:0 agrees well with the LLNL result. We remark that it is
reported in [34] that the U. Colorado results (4 million particles) were not completely converged at this low

value of R0=LT , while the LLNL results (8–34 million particles) were. As a consequence, we have omitted

the U. Colorado results in the shift region. gyro, at 2.6 million gridpoints, is well converged in the shift

region. The time-history of the gyro runs in the shift region appear in Fig. 12. After a steady level of

transport out to t ¼ 400, the R0=LT ¼ 6:0 case drops to a low transport level coincident with the sponta-

neous excitation of long wavelength zonal flows. Fig. 12 also shows that the R0=LT ¼ 5:0 case experiences a

similar but more rapid decay to a final level vi=vGB 6 0:1. Higher velocity-space resolution is required to

approach vi ¼ 0 more closely: an R0=LT ¼ 5:0 simulation with nk ¼ 12 and n� ¼ 12 (not shown) gives
vi=vGB 6 0:01.

We have made a straightforward convergence study for the Cyclone DIII-D base case using the pa-

rameters shown in Table 6. The time histories of the diffusivities for the three tabulated cases are given in

Fig. 13. The highest resolution run (case 1) gives the converged result previously plotted in Fig. 11. With

resolution dropped to only 480,000 gridpoints, and timestep doubled to Dt ¼ 0:2 (case 2), the gyro vi is

only 1.3% less than the 2.6 million gridpoint case. With resolution dropped further to 173,000 gridpoints

(case 3), we finally see a large discretization effect. At 480,000 gridpoints (case 2), the run time is slightly

greater than 1 h on 32 processors of the NERSC IBM SP POWER3 machine. At 173,000 gridpoints (case

Fig. 11. vi versus R=LT scan for the Cyclone DIII-D base case, compared with results from the LLNL and U. Colorado gyrokinetic

PIC codes.

Table 6

gyro grid dimensions for Cyclone DIII-D base caseparameter scans of Figs. 11 and 12 (case 1) as well as for the convergence study

shown in Fig. 6 (cases 1–3)

Case nr ns nb nk n� nn Dt

1 128 20 6 8 8 16 0.1

2 100 20 6 6 5 8 0.2

3 90 20 6 4 4 6 0.2
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3), the run time is about 1.5 h on 32 processors of a 550 MHz Intel-beowulf cluster. Low-resolution PIC

simulations behave differently, and for less than a half-million particles, flux-tube PIC codes tend to be

noise-dominated at ðcs=aÞt > 200 [41].

10.5. Nonlinear nonperiodic test case

We limit our discussion of nonperiodic boundary conditions to a test case which demonstrates their

behavior with ‘‘flat profiles’’. If boundary effects are truly absent from the computational domain, we
expect to measure the same diffusion from the flux-tube simulation as from the flat-profile nonperiodic

simulation. Fig. 14 shows the results of such a comparison. The Waltz standard case parameters were used

in a box of size ‘ ¼ 80qs. This system is farther from marginal linear stability than the Cyclone DIII-D base

case at R0=LT ¼ 6:9.
Inside the computational domain (dotted line), the radial diffusivity profiles match quite well. With

reference to Section 7, the dotted lines are r ¼ rLd; rRd, the dashed lines are r ¼ rLb; rRb and the solid lines

are r ¼ rLe; rRe. These boundary conditions, when combined with an adaptive source, allow us to study

systematically profile-related transport effects. Further discussion of nonperiodic ITG cases, profile shear
stabilization, and broken gyroBohm scaling appears in [25].

Fig. 13. Time-evolution of turbulent diffusivity for R0=LT ¼ 6:9 showing converged result for less than 1/2 million gridpoints, and low

but still sensible result for as few as 140,000 gridpoints. Numbers in parentheses are time-averaged diffusivities.

Fig. 12. Time-evolution of turbulent diffusivity for R0=LT in the Dimits shift region for the Cyclone DIII-D base case. Decay to almost

zero diffusion is seen.
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11. Nonadiabatic electron benchmarks

Critical to the success of kinetic electron and finite-be simulations was exhaustive benchmarking with the

gks code. In what follows we document a variety of linear cross-code comparisons.

11.1. Electron collisions

We will discuss only briefly the issue of collisions in the present work. The dominant collisional processes

for typical parameters are electron–electron and electron–ion scattering. In the electrostatic limit, these give

rise to diffusion of the electron distribution, h2, in pitch-angle:

C2ðh2Þ ¼
m2ð�Þ
2

o

on
ð1	 n2Þ oh2

on
; ð110Þ

where n¼: vk=
ffiffiffiffiffi
2�

p
2 ½	1; 1� is the cosine of the pitch-angle. Both electron–electron and electron–ion colli-

sions are contained in me, which we write as

m2ð�Þ ¼
mei
�3=2

½Zeff þ Heeð
ffiffi
�

p
Þ� with HeeðxÞ ¼

e	x
2ffiffiffi

p
p

x
þ 1

�
	 1

2x2

�
erfðxÞ: ð111Þ

The electron–ion rate is mei¼: x2
pee

2m1=2
e logK=ð2TeÞ3=2, with logK the Coulomb logarithm. Diffusion and

slowing-down in energy are presently ignored. Momentum is not conserved by this collision operator; rather

D
Dt

� �
coll

Z
dnnh2 ¼ 	m2ð�Þ

Z
dnnh2: ð112Þ

Numerically, we run into some difficulty in treating pitch-angle scattering because h2 is not known on an

equally spaced h-grid. Consequently, evaluation of the scattering operator C – which requires evaluation of
o=on at constant h – becomes a two-dimensional irregular grid problem. The diffusion term itself is split

from the rest of the GK equation, and a partial time-advance of

oh2
ot

¼ C2ðh2Þ; ð113Þ

is sought with an implicit scheme. The implicit scheme is necessary to overcome the extremely restrictive

viscous Courant condition in the vicinity of the trapped-passing boundary (note the points close to the

Fig. 14. Comparison of radial diffusivity profiles for flux-tube (thick curve) and nonperiodic (thin curve) code operation. Dotted lines

are r ¼ rLd; rRd, dashed lines are r ¼ rLb; rRb and solid lines are r ¼ rLe; rRe.
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trapped-passing boundary in Fig. 4). While the overall method is still experimental, it gives results which

compare reasonably well with gks (Fig. 15). Nevertheless, much more work on collisional benchmarking is

required. We will discuss the details of the ðh; nÞ-stencil selection algorithm, and generalization to elec-

tromagnetic fluctuations and energy diffusion, in a future publication.

11.2. be scans

Figs. 16 and 17 show growth rate and frequency comparisons, respectively, with the gks code for the

Waltz standard case parameter set at khqs ¼ 0:3. Like all linear calculations in this paper, we use a periodic

radial domain with ðnr; nd ; ngÞ ¼ ð6; 5; 6Þ. The parameters ðn�; ns; nkÞ are the same as in Table 6 (case 1). The

ideal MHD critical be for this case, which is slightly greater than 0.6%, is reflected in a jump from ITG to

KBM branches. Below, at and above the critical be there is very good agreement with gks. There is a small
discrepancy in the frequency of the KBM branch, very likely the result of inadequate grid resolution in one

of the codes – as the KBM branch generally requires better energy resolution than the ITG branch. As an

illustration of the quality of the solver, we give sample plots of electromagnetic eigenmodes as functions of

the extended ballooning angle. The modes are not computed but reconstructed this way – using radial

Fourier transforms – for diagnostic purposes. A representative low-be ITG mode is given in Figs. 18 and 19.

Past the critical be, modes have the KBM polarization with nearly vanishing Ek. Such modes are shown in

Fig. 15. Collision frequency scan comparing gyro (solid curve) and gks (dotted line) growth rates. The Waltz standard case pa-

rameters are used.

Fig. 16. be scan of growth rate for the Waltz standard case at khqs ¼ 0:3. gyro results are shown by solid curve, gks results by dotted

curve.
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Figs. 20 and 21. We remark that radial upwind differencing in the drift-advection terms is necessary when

solving the electron equations on a qi-scale grid. In cases where electron Landau layer effects do not need to

be resolved, upwind dissipation eliminates unwanted numerical effects which would occur in a nondissi-

pative scheme. The validity of the upwind approach relies on the constancy of the eigenvalue as the radial

grid is refined.

Fig. 17. Same as previous figure, except for frequency.

Fig. 18. Electrostatic potential, /, as a function of ballooning angle for be ¼ 0:1%. Both the real (solid curve) and imaginary (dotted

curve) parts are shown.

Fig. 19. Magnetic potential, Ak, as a function of ballooning angle for be ¼ 0:1%. Both the real (solid curve) and imaginary (dotted

curve) parts are shown.
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Next, Figs. 22 and 23 show that decreasing the root of the mass ratio, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
, from 60 to 20 (with

timestep given by lDt ¼ 1:2) results in a very minor perturbation to the growth rates and frequencies below

the critical be. This observation motivated us to carry out nonlinear testing with the latter small value of the

mass ratio with the benefit of reduced computational expense.

Fig. 20. Same as Fig. 18, but with be ¼ 1%.

Fig. 21. Same as Fig. 19, but with be ¼ 1%.

Fig. 22. Comparison of mode growth rates for real electrons with l ¼ 60, and artificially heavy electrons with l ¼ 20 for the Waltz

standard case. The solid curve is taken from Fig. 16.

J. Candy, R.E. Waltz / Journal of Computational Physics 186 (2003) 545–581 575



12. Electromagnetic transport calculations

Using the Cyclone DIII-D base case parameters with kinetic electrons and electromagnetic fluctuations,

we performed preliminary nonlinear transport calculations for be ¼ ½0:0%; 0:25%; 0:5%�. Grid resolution is
summarized in Table 7, and the box size is ‘ ¼ 100qs. We strongly caution the reader that the results are

preliminary – in fact, we have indications that at the present grid resolution, results are not fully converged.

The calculations are extremely expensive – each of the three simulations discussed in this section took

roughly 44 h on 128 processors of the NERSC IBM SP RS/6000. Fig. 24 gives the ion and electron thermal

diffusivities at be ¼ 0:0%. Figs. 25 and 26 give the same for be ¼ 0:25% and be ¼ 0:5% respectively. The

ideal MHD critical be for this case is about 1:2%. Note that there is a small but measurable increase in

transport. Much more work is needed to establish the physical validity of this effect. Attempts to simulate

be ¼ 0:75% have shown strongly intermittent results with extremely large excursions in diffusivity. The

Fig. 23. Comparison of mode frequencies for real electrons with l ¼ 60, and artificially heavy electrons with l ¼ 20 for the Waltz

standard case. The solid curve is taken from Fig. 17.

Fig. 24. Ion and electron thermal diffusivity (electrostatic components) at be ¼ 0:0% for the Cyclone DIII-D base case. Trapped

electrons are included. Here, �vvi ¼ 8:1� 2:2 and �vve ¼ 2:4� 0:7. Particle diffusivities are �DDi ¼ �DDe ¼ 	1:0� 0:3.

Table 7

gyro grid for nonlinear electromagnetic cases

nr ns nb nk n� nn Dt

128 20 6 8 5 16 0.02
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dynamical time-integration error for the be ¼ 0:5% case is given in Fig. 27, indicating that this case was

integrated forward with extremely high accuracy. To understand the effect of increasing be, it is instructive

to look at plots of the time-averaged RMS intensity, h/iRMS in the ðkrqs; khqsÞ-plane. Fig. 28 shows the

Fig. 25. Ion and electron thermal diffusivity (electrostatic components) at be ¼ 0:25% for the Cyclone DIII-D base case. Trapped

electrons are included. Here, �vvi ¼ 8:4� 2:7 and �vve ¼ 2:9� 1:0. Particle diffusivities are �DDi ¼ �DDe ¼ 	0:1� 0:4.

Fig. 26. Ion and electron thermal diffusivity (electrostatic components) at be ¼ 0:5% for the Cyclone DIII-D base case. Trapped

electrons are included. Here, �vvi ¼ 9:1� 2:9 and �vve ¼ 4:1� 1:5. Particle diffusivities are �DDi ¼ �DDe ¼ 1:8� 1:2.

Fig. 27. Fractional time-integration error in the ion and electron distribution functions for be ¼ 0:5%. Not surprisingly, the electron

error (dhe, thick curve) is about 10 times greater than the ion error (dhi, thin curve).
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Fig. 28. Time-averaged RMS spectral density h/iRMS for be ¼ 0:0% as a function of KX � krqs and KY � khqs.

Fig. 30. Time-dependence of RMS intensities for axisymmetric (dotted curve) and nonaxisymmetric (solid curve) potentials for the

Cyclone DIII-D base case at be ¼ 0:5%.

Fig. 29. Time-averaged RMS spectral density h/iRMS for be ¼ 0:5% as a function of KX � krqs and KY � khqs.
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spectrum for be ¼ 0:0%. When compared with the be ¼ 0:5% in Fig. 29, we note a relative shift in intensity

to lower values of kh.

Our experience with electrostatic simulations has shown that in the turbulent regime, and with adequate

numerical resolution, the quantities h/n¼0iRMS and h/n>0iRMS oscillate in time at about roughly the same

mean value. This property tends to be strongly violated, with a run-away of one component, in the presence

of a numerical instability. For the case be ¼ 0:5%, we find that the interplay between axisymmetric and

nonaxisymmetric modes – as shown in Fig. 30 – gives no obvious indication of run-away.

13. Summary

The preliminary version of gyro was an attempt to extend the numerical methods used in gks and gs2

beyond the limit of flux-tubes. We began with a semi-implicit time-advance algorithm in which linear terms

were evolved implicitly (first-order temporal accuracy), and the nonlinear terms split and evolved separately

using a fourth-order ERK method. This approach, which used a fixed poloidal grid, proved to have di-

sastrous time-step convergence properties, even for ITG-ae simulations. Ironically, while the goal of the
semi-implicit method was to circumvent the electron Courant condition ðvk2=qRÞðDt=DhÞ < 1, we found

ourselves using values of Dt which satisfied this inequality even for adiabatic electron cases! This was the

most fundamental lesson learned. Part of the reason for our difficulty was that the implicit scheme (really a

specialized method for linear flux-tube calculations) was not easily generalized to the radial domain.

Without flux-tube symmetry, a linear or – oh splitting was required for the GK equation, and distributed

matrix operations (scaLAPACK) for the field-solve. The linear splitting caused zonal-flow instabilities

which were overcome only with the use of an added predictor-corrector stage. Overall, the method was

complex, expensive and inefficient. We were unable to reap the same apparent benefits as gs2 in the use of
implicit differencing.

These experiences were a clear indication that the problem required a completely different approach.

Since the nonlinear terms, which can only be treated explicitly, set the timestep, it made no sense to us

to pursue another semi-implicit discretization. Instead, we focused on explicit methods – keeping in mind

always the most general form of the problem (kinetic electrons, finite-b, arbitrary profiles). The MOL

approach was chosen because it provides a very general, flexible framework to explore different space

and time discretizations without any a priori restrictions to a given discretization. We discovered quite

soon that particle trapping posed a problem for all explicit methods (Section 4). This motivated the
orbit-grid approach, which in turn necessitated the blending-function Maxwell solver. The speed and

efficiency of the final algorithm makes ITG-ae transport calculations quite practical on even small Be-

owulf clusters (for example, the 46-processor GA cluster). We are confident that gyro will prove to be a

valuable tool for the first-principles calculation of turbulent transport characteristics of current and next-

step tokamaks.
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